98 research outputs found

    Constrained Ramsey Numbers

    Full text link
    For two graphs S and T, the constrained Ramsey number f(S, T) is the minimum n such that every edge coloring of the complete graph on n vertices, with any number of colors, has a monochromatic subgraph isomorphic to S or a rainbow (all edges differently colored) subgraph isomorphic to T. The Erdos-Rado Canonical Ramsey Theorem implies that f(S, T) exists if and only if S is a star or T is acyclic, and much work has been done to determine the rate of growth of f(S, T) for various types of parameters. When S and T are both trees having s and t edges respectively, Jamison, Jiang, and Ling showed that f(S, T) <= O(st^2) and conjectured that it is always at most O(st). They also mentioned that one of the most interesting open special cases is when T is a path. In this work, we study this case and show that f(S, P_t) = O(st log t), which differs only by a logarithmic factor from the conjecture. This substantially improves the previous bounds for most values of s and t.Comment: 12 pages; minor revision

    Thresholds for Extreme Orientability

    Full text link
    Multiple-choice load balancing has been a topic of intense study since the seminal paper of Azar, Broder, Karlin, and Upfal. Questions in this area can be phrased in terms of orientations of a graph, or more generally a k-uniform random hypergraph. A (d,b)-orientation is an assignment of each edge to d of its vertices, such that no vertex has more than b edges assigned to it. Conditions for the existence of such orientations have been completely documented except for the "extreme" case of (k-1,1)-orientations. We consider this remaining case, and establish: - The density threshold below which an orientation exists with high probability, and above which it does not exist with high probability. - An algorithm for finding an orientation that runs in linear time with high probability, with explicit polynomial bounds on the failure probability. Previously, the only known algorithms for constructing (k-1,1)-orientations worked for k<=3, and were only shown to have expected linear running time.Comment: Corrected description of relationship to the work of LeLarg

    On the strong chromatic number of random graphs

    Full text link
    Let G be a graph with n vertices, and let k be an integer dividing n. G is said to be strongly k-colorable if for every partition of V(G) into disjoint sets V_1 \cup ... \cup V_r, all of size exactly k, there exists a proper vertex k-coloring of G with each color appearing exactly once in each V_i. In the case when k does not divide n, G is defined to be strongly k-colorable if the graph obtained by adding k \lceil n/k \rceil - n isolated vertices is strongly k-colorable. The strong chromatic number of G is the minimum k for which G is strongly k-colorable. In this paper, we study the behavior of this parameter for the random graph G(n, p). In the dense case when p >> n^{-1/3}, we prove that the strong chromatic number is a.s. concentrated on one value \Delta+1, where \Delta is the maximum degree of the graph. We also obtain several weaker results for sparse random graphs.Comment: 16 page

    Independent transversals in locally sparse graphs

    Get PDF
    Let G be a graph with maximum degree \Delta whose vertex set is partitioned into parts V(G) = V_1 \cup ... \cup V_r. A transversal is a subset of V(G) containing exactly one vertex from each part V_i. If it is also an independent set, then we call it an independent transversal. The local degree of G is the maximum number of neighbors of a vertex v in a part V_i, taken over all choices of V_i and v \not \in V_i. We prove that for every fixed \epsilon > 0, if all part sizes |V_i| >= (1+\epsilon)\Delta and the local degree of G is o(\Delta), then G has an independent transversal for sufficiently large \Delta. This extends several previous results and settles (in a stronger form) a conjecture of Aharoni and Holzman. We then generalize this result to transversals that induce no cliques of size s. (Note that independent transversals correspond to s=2.) In that context, we prove that parts of size |V_i| >= (1+\epsilon)[\Delta/(s-1)] and local degree o(\Delta) guarantee the existence of such a transversal, and we provide a construction that shows this is asymptotically tight.Comment: 16 page
    corecore